- NS2583 同步升压型 2A 双节锂电池充电管理 IC
- NLC47022带NTC功能和电量均衡功能电流2A 5V异
- PT2027 单触控双输出 LED 调光 IC
- HT316C兼容HT326C防破音功能免电感滤波2×20WD
- HT3386兼容TPA3118 2×50W D类立体声音频功放
- NS8220 300mW 双声道耳机音频放大器
- HT6875 2.8W防削顶单声道D类音频功率放大器
- HT77221 HT77211 4.0V~30V输入,2A/1.2A同步降压变换器
- NS4117X 系列 外置 MOS 管开关降压型 LED 恒流控制器
- HT71663 13V,12A全集成同步升压转换器
- HT71763 20V,15A全集成同步升压转换器
- NS2160 同步开关型降压锂电池充电管理 IC
- HT7702 2.5~5.5V输入,2A同步降压变换器
- HT77231 4.0V~28V输入,3.5A同步降压变换器
透过电感损耗看电源功耗,计算一点不复杂
1、概述 电源的功耗是多方面的,包括开关损耗、输入/输出电容损耗、控制器静态功耗以及电感损耗。本文主要介绍 算起来很简单的电感损耗。电感损耗包括两方面:其一是与磁芯相关的损耗,即传统的铁损;其二是与电感绕组相关的损耗,即通常所谓的铜损。 Total Power Dissipation(W)= CopperLoss + CoreLoss CopperLoss = IRMS2* RDC(mΩ)/1000 CoreLoss一般通过查厂商的表格得出。 某主板上的开关电源照片 2、计算方法 以Pulse的PA1513NL系列的电感为例,采用PA1513NL.321NLT。在其官网上下载到的datasheet如下。基本的参数为:电感值为320nH,直流电阻为0.53±11.3%。 在设计中,我们将这个电阻用在了开关频率为600kHz,负载电流 ILOAD为30A的BUCK电路中,其中Iripple=30%*ILOAD。 根据以上公式,可以很容易计算出最大的铜损为: CopperLoss = IRMS2* RDC(mΩ)/1000 =(30A)2 *(0.53*111.3% mΩ)/1000 = 0.531W
△B = .23* L(nH)* △I = 0.23 * 320(nH)* 30% * ILOAD = 662.4 由于开关电源工作在600KHz的频率下面,查表可以得到铁损大概在0.18W左右。 那么总的损耗如下: Total Power Dissipation(W)= CopperLoss + CoreLoss = 0.711W 通过查表,可以得到电感在正常工作的情况下,温升大概是45摄氏度。 评估电感的损耗主要作用是,一是看电感的损耗是否会引起电感过热的情况,导致电感值下降甚至损坏;第二个作用是用来调整电感的参数,提升整个电源转换系统的效率。 3、关于CoreLoss 其实很多电感公司的datasheet上都没有给出CoreLoss的计算方法以及曲线,如果这样的话,计算铁损就几乎成为一个不可能事情了。对于这个情况,有两个建议。 如果这个电感是用在很大电流的并且比较关键的设备中的话,那么电感请选有提供铁损的供应商,比如Pulse,Wurth,JW Miller等; 如果是在电流比较小或者开关频率比较低的场合,一般铁损并不是关键因素。那么先评估铜损是否OK,留有一定的裕量,如果在后续的测试中发现电感过热的话,想办法降低电源的开关频率,或者采用DCR小一点的电感。 |