- NS2583 同步升压型 2A 双节锂电池充电管理 IC
- NLC47022带NTC功能和电量均衡功能电流2A 5V异
- PT2027 单触控双输出 LED 调光 IC
- HT316C兼容HT326C防破音功能免电感滤波2×20WD
- HT3386兼容TPA3118 2×50W D类立体声音频功放
- NS8220 300mW 双声道耳机音频放大器
- HT6875 2.8W防削顶单声道D类音频功率放大器
- HT77221 HT77211 4.0V~30V输入,2A/1.2A同步降压变换器
- NS4117X 系列 外置 MOS 管开关降压型 LED 恒流控制器
- HT71663 13V,12A全集成同步升压转换器
- HT71763 20V,15A全集成同步升压转换器
- NS2160 同步开关型降压锂电池充电管理 IC
- HT7702 2.5~5.5V输入,2A同步降压变换器
- HT77231 4.0V~28V输入,3.5A同步降压变换器
放大电路频率特性总结
1.耦合电容、旁路电容、极间电容存在 → 阻抗随频率变化 → 放大倍数是频率的函数——频率响应(频率特性),它包括幅频特性和相频特性。
2.共射放大电路幅频特性显示:
低频区: f↓ → A u ↓ 。
原因:耦合电容的存在。
高频区: f↑ → A u ↓ 。
原因:极间电容的存在。
中频区: A u 不随 f 变化。
原因:耦合电容和极间电容的影响很小,可忽略。
共射放大电路相频特性显示:
低频区: f↓ → ϕ 在 180 ∘ 基础上产生 0 ∘ ~ 90 ∘ 相移。
高频区: f↑ → ϕ 在 180 ∘ 基础上产生 0 ∘ ~− 90 ∘ 相移。
中频区: ϕ= 180 ∘ ,输出与输入反相(如第二章分析结果)。
3.低频区:当 A u = 1 2 A um 时, f= f L ——下限频率
高频区: 当 A u = 1 2 A um 时, f= f H ——上限频率
BW= f H − f L ——通频带。表明放大电路对不同频率信号的响应能力的大小。通频带愈宽,放大电路对不同频率信号的响应能力愈强。
4.受通频带限制,当输入信号包含有多个频率信号时 → 频率失真。它包含幅频失真和相频失真。
幅频失真:放大电路对输入信号中不同频率的谐波分量的放大倍数不同造成的失真。
相频失真:放大电路对输入信号中不同频率的谐波分量的相移不同造成的失真。
频率失真属于线性失真。
5.三极管极间电容的存在会影响到三极管对高频信号的放大能力,三极管对高频信号的放大能力可用三极管的频率参数描述。
三极管的频率参数: f β 、 f α 、 f T
当 f= f β 时, | β ˙ |= 1 2 β 0 ;
当 f= f α 时, | α ˙ |= 1 2 α 0 ;
当 f= f T 时, | β ˙ |=1 ;
三者关系: f β < f T < f α
三极管的频率参数也是选择三极管的重要依据。
分析三极管极间电容对高频信号的影响可采用混合 π 型等效电路。
6.单管共射放大电路频率响应的分析,分中频段、低频段、高频段三段进行分析。
(1)中频段:耦合电容和极间电容均不考虑,用中频区等效电路进行分析。
(2)低频区:仅考虑耦合电容,极间电容影响忽略,用低频区等效电路进行分析。
分析内容:
a.确定放大倍数;
b.画出频率特性。
结论:耦合电容所在回路的时间常数愈大,低频响应愈好。
(3)高频区:仅考虑极间合电容,耦电容影响忽略,用高频区等效电路进行分析。
分析内容:
a.确定放大倍数;
b.画出频率特性。
结论:极间电容愈小,高频响应愈好。
7.多级放大电路的频率特性可以通过将各级幅频特性和相频特性分别进行叠加获得。多级放大电路的通频带总是比组成它的每一级的通频带为窄。
上一篇:开关电源PCB设计要点
下一篇:单运放完成双滞后转换特性