- NS2583 同步升压型 2A 双节锂电池充电管理 IC
- NLC47022带NTC功能和电量均衡功能电流2A 5V异
- PT2027 单触控双输出 LED 调光 IC
- HT316C兼容HT326C防破音功能免电感滤波2×20WD
- HT3386兼容TPA3118 2×50W D类立体声音频功放
- NS8220 300mW 双声道耳机音频放大器
- HT6875 2.8W防削顶单声道D类音频功率放大器
- HT77221 HT77211 4.0V~30V输入,2A/1.2A同步降压变换器
- NS4117X 系列 外置 MOS 管开关降压型 LED 恒流控制器
- HT71663 13V,12A全集成同步升压转换器
- HT71763 20V,15A全集成同步升压转换器
- NS2160 同步开关型降压锂电池充电管理 IC
- HT7702 2.5~5.5V输入,2A同步降压变换器
- HT77231 4.0V~28V输入,3.5A同步降压变换器
三运放仪表放大器的放大倍数分析
仪表放大器是一种非常特殊的精密差分电压放大器,它的主要特点是采用差分输入、具有很高的输入阻抗和共模抑制比,能够有效放大在共模电压干扰下的信号。本文简单分析一下三运放仪表放大器的放大倍数。
一、放大倍数理论分析三运放仪表放大器的电路结构如下图所示,可以将整个电路分为两级:第一级为两个同相比例运算电路,第二级为差分运算电路。1、第一级电路分析根据运放的虚短可以得到:
同时根据虚断可以得到流经电阻R1、R2、R3的电流近似相等,记为I。
易知此时可以得到因此,第一级电路的电压放大倍数
值得注意的是,该放大倍数为差模电压放大倍数。
当输入信号为共模信号时因此,流经电阻R3的电流
此时两个运放相当于两个电压跟随器,因此其共模增益为1。
根据上述分析可以得到:
(1)输入端的两个同相比例运算电路可以提高整个电路的输入阻抗;
(2)差模增益可调,共模增益始终为1,提高差模增益可以提高共模抑制比。
2、第二级电路分析
假设R4=R5、R6=R7,此时根据差分放大电路的放大倍数计算公式可以得到第二级电路的差模放大倍数因此该仪表放大器的差模放大倍数二、仿真分析
令电阻R1=20kΩ,R2=R3=R4=R5=R6=R7=10 kΩ,在电路的两端输入频率为10Hz,直流分量为1V,峰峰值为200mV,相位相差180°的两路正弦信号。根据上述理论分析可得,第一级电路的差模放大倍数为2,共模放大倍数为1;整个电路的放大倍数为2。
1、观察第一级电路的输入与输出波形,即(V2-V1)与(Vo2-Vo1)的波形,可以看出,第一级电路的放大倍数近似为2,符合上述理论计算。2、观察第一级电路的单端输入输出波形,即V1与Vo1的波形,可以看出,输入共模信号为1V,输出共模信号仍为1V,共模增益为1,与理论分析相符。
3、观察整个电路的传递函数,可以看出,整个电路的放大倍数近似为2,符合理论计算,同时根据仿真结果也可以看出,仪表放大器具有很大的输入阻抗,其输出阻抗则很小。
上一篇:负反馈放大电路的四种基本组态
下一篇:压敏电阻吸收多余电流的原因