- NS2583 同步升压型 2A 双节锂电池充电管理 IC
- NLC47022带NTC功能和电量均衡功能电流2A 5V异
- PT2027 单触控双输出 LED 调光 IC
- HT316C兼容HT326C防破音功能免电感滤波2×20WD
- HT3386兼容TPA3118 2×50W D类立体声音频功放
- NS8220 300mW 双声道耳机音频放大器
- HT6875 2.8W防削顶单声道D类音频功率放大器
- HT77221 HT77211 4.0V~30V输入,2A/1.2A同步降压变换器
- NS4117X 系列 外置 MOS 管开关降压型 LED 恒流控制器
- HT71663 13V,12A全集成同步升压转换器
- HT71763 20V,15A全集成同步升压转换器
- NS2160 同步开关型降压锂电池充电管理 IC
- HT7702 2.5~5.5V输入,2A同步降压变换器
- HT77231 4.0V~28V输入,3.5A同步降压变换器
为何Layout时信号走线要先过ESD/TVS管?
都说接口处的信号要先过ESD/TVS管,然后拉到被保护器件,为什么不这样做效果就不好?那如果受板子实际情况限制,必须这样layout,是一定不行吗?
为什么有上面这个问题?
有这个问题的原因,我觉得主要是因为两点。
一是因为从原理图上看来,二者并没有区别,都是ESD管接在同一个网络GPIO上面。既然没有区别,那为什么结果会有差异呢?对于新手来说,确实难以理解。
二是既然跟layout有关,那两种不同的layout方式?到底是影响了什么参数造成了这个差异呢?这些网上也没有找到相关的较深入的文章。
问题的原因——走线电感
我们设想的是,放电时,静电能量都从ESD管这里泄放掉,而不通过我们的芯片放电,这样才能实现ESD管保护芯片的目的。
如上图,理想情况下,如果ESD管的钳位电压足够低,那么静电放电电流基本都从ESD管进行泄放。问题是,我们通常要通过PCB实现这个电路,PCB Layout走线也不是理想的,会有走线电感。
上一期我们知道,ESD放电时信号频谱带宽是几十Mhz到500Mhz,是高频的,而电感是频率越高,阻抗越大。如果Layout引入寄生电感,ESD泄放的时候电流也会在电感上面形成压降,导致芯片端残压升高,如果电压高于了芯片的耐受电压,那么就会击穿芯片,导致防护失败。
上面说法还是笼统,下面我们拿数据说话。
走线电感的阻抗
很多人可能会认为走线电感,那不就是寄生电感吗,听起来就很小,不能直接忽略吗?能不能忽略自然就是看影响,只有没影响的情况下才能忽略,那到底能不能忽略呢?
PCB的走线电感是可以计算的,就是用下面这个公式:
套用这个公式,可以得到走线长度1cm,宽度为6mil,铜厚为1oz的走线电感为9.41nH。
上面这个表格是我自己做了个excel表格,文末会分享给兄弟们,可以在excel里面输入对应的线宽,铜厚,线长等参数,然后就可以得到对应的电感值了,也可以看右边的表格做一个快速的估算。
好了,现在电感值已经有了,是9.41nH,我们根据公式ZL=jwL=2πfL,得到在50Mhz(ESD放电波形电流频谱是几十Mhz到500Mhz,貌似(不太确定)ESD释放时能量主要集中在几十Mhz这个频率,所以取50Mhz)时的阻抗ZL(50Mhz)=2*π*50Mhz*9.41nH≈3Ω。
电感走线阻抗已经知道了,那么影响到底有多大呢?
电感的影响
我们以3.3V ESD器件esd9b33st5g为例子,如下图。
如果我们是理想Layout 的情况下(没有寄生电感),那么在ESD管泄放电流Ipp为1A的时候,钳位电压为10.5V。而如果现在Layout不好,引入了寄生电感,其50Mhz时等效阻抗为3欧姆,如果电流依然是1A,那么电感上面的压降就是3V,这样导致整体看起来,钳位电压从10.5V提到到13.5V。
以上举的是6mil,10mm的走线长度,这个走线长度已经是非常小的了,可以看到,它已经对我们的ESD性能造成了影响。
如果长度增加到10cm,从上表知道,走线电感就是140nh,50Mhz对应阻抗是ZL(50Mhz)=2*π*50Mhz*140nH≈43Ω,同样的方法得到1A定流时的等效钳位电压VC=53.5V,这是我们说这个ESD完全没用应该是没毛病的。
上一篇: 监听音箱和普通音响的区别
下一篇:单片机“位”的解析